首页> 外文OA文献 >Identifying Influential Links for Event Propagation on Twitter: A Network of Networks Approach
【2h】

Identifying Influential Links for Event Propagation on Twitter: A Network of Networks Approach

机译:确定Twitter上事件传播的影响力链接:a   网络方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Patterns of event propagation in online social networks provide novelinsights on the modeling and analysis of information dissemination overnetworks and physical systems. This paper studies the importance of followerlinks for event propagation on Twitter. Three recent event propagation tracesare collected with the Twitter user language field being used to identify theNetwork of Networks (NoN) structure embedded in the Twitter follower networks.We first formulate event propagation on Twitter as an iterative state equation,and then propose an effective score function on follower links accounting forthe containment of event propagation via link removals. Furthermore, we findthat utilizing the NoN model can successfully identify influential followerlinks such that their removals lead to remarkable reduction in eventpropagation on Twitter follower networks. Experimental results find that thebetween-network follower links, though only account for a small portion of thetotal follower links, are crucial to event propagation on Twitter.
机译:在线社交网络中事件传播的模式为通过网络和物理系统进行信息传播的建模和分析提供了新颖的见解。本文研究了跟随链接对于Twitter上事件传播的重要性。利用Twitter用户语言字段收集了三个最近的事件传播轨迹,用于识别嵌入在Twitter追随者网络中的网络网络(NoN)结构。我们首先将Twitter上的事件传播公式化为迭代状态方程,然后提出有效得分函数在跟随者链接上考虑了通过链接删除来控制事件传播。此外,我们发现利用NoN模型可以成功地识别有影响力的关注者链接,从而将其删除导致Twitter关注者网络上事件传播的明显减少。实验结果发现,网络之间的跟随者链接尽管仅占全部跟随者链接的一小部分,但对于Twitter上的事件传播至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号